2010年 9 月26日 実施

平成22年度(第43回)

情報処理検定試験 (プログラミング部門)

第2級 試験問題

- 1. 監督者の指示があるまで、試験問題に手を触れないでください。
- 2. 試験問題は8ページあります。
- 3. 解答はすべて解答用紙に記入します。
- 4. 【1】【2】【3】【4】は共通問題です。
- 【5】【6】【7】の問題は、COBOL・イベント駆動型BASICの どちらか1つを選択し、解答用紙の選択言語を で囲んでください。
- 6. 電卓などの計算用具は使用できません。
- 7. 筆記用具などの物品の貸借はできません。
- 8. 問題用紙の回収については監督者の指示にしたがってください。
- 9. 制限時間は50分です。

主催 舞 全国商業高等学校協会

【1】 次の説明文に最も適した答えを解答群から選び、記号で答えなさい。

- 1. 2進数の1011と10の積を表す2進数。
- 2. 電子商取引の1つで企業間の取引のこと。インターネット技術の発展により、取引量が増えている。
- 3. データやシステムの情報の破損・紛失に備え、あらかじめ複製し別の場所に保存しておくこと。
- 4. ケーブルテレビ放送の回線を利用し、コンピュータをインターネットに接続するための装置。
- 5. フルカラー静止画像の圧縮形式の1つ。ディジタルカメラの保存形式として広く普及している。

- 解答群 --

ア. ADSLモデム イ. JPEG

ウ. C to C

工. 1 0 1 1 0

オ. GIF

カ. 1101

キ. CATVモデム **ク**. アップデート

ケ. バックアップ

□. B to B

【2】 次のA群の語句に最も関係の深い説明文をB群から選び、記号で答えなさい。

A群

- 1. J I S
- 2. バイナリファイル
- 3. dpi
- 4. フラッシュメモリ
- 5. 光ファイバ

R群

- ア. 1インチあたりの画素数を表す単位で、プリンタや画面のきめ細かさを表現 するときに使われる尺度。
- **イ**. コンピュータの主記憶装置に使われるメモリ。電源を切ると記憶内容が消えて しまう揮発性の特性を持つ。
- **ウ**. ガラスやプラスティックなどの繊維でできた通信ケーブル。
- **エ**. アメリカ国内の工業製品などの標準化を行う団体。
- **オ**. 文字データだけではなく画像や音声などのデータも保存することができる, 2 進数形式のファイル。
- **カ**. 日本国内における工業製品などの標準規格。
- **キ**. コンピュータの操作が直感的に行えるように、アイコンなどのグラフィックを 使用したインタフェース。
- **ク**. データの書き換えが可能な半導体メモリ。電源を切っても記憶内容が消えない 不揮発性の特性を持つ。
- **ケ**. データをコンマで区切って記録したファイル。
- □. 情報が連続的に変化するアナログ信号を送受信するための回線。

【3】 次の説明文に最も適した答えをア、イ、ウの中から選び、記号で答えなさい。

1. 手書き文字などを光学的に読み取り、文字データとして入力する装置やソフトウェア。

ア. OMR

1. ONU

ウ. OCR

2. 音声信号をディジタル化して記録するための保存形式の1つ。

ア. BMP

1. PDF

ウ. WAVE

3. 知的財産権のうち特許権,実用新案権,意匠権,商標権など健全な商取引や研究開発を行うための権利の総称。

ア. 産業財産権

イ. 著作権

ウ. 肖像権

4. 試用期間終了後、代金を支払うことで継続して利用できるソフトウェア。

ア. フリーウェア

イ. シェアウェア

ウ. スパイウェア

5. 解像度300×200ピクセル, 1ピクセルあたり256色(8ビット)の色情報を持つ画像1枚分の記憶容量。ただ し、1 Kバイト=1,000バイトとする。

ア. 60 K バイト

イ. 480 K バイト

ウ. 600 K バイト

【4】 次の各問いに答えなさい。

- 問1.次の説明文に最も適した答えを解答群から選び、記号で答えなさい。
 - (1) プログラムの記述に文法上の誤りはないが、実行結果が意図した結果と違うエラー。
 - (2) OSの違いに関係なく動作させることができる、オブジェクト指向型のプログラム言語。
 - (3) プログラム言語で記述されたソースプログラムを、機械語に翻訳したあとのプログラム。

- 解答群 -

7. Java

イ. 原始プログラム

ウ. 文法エラー

エ、目的プログラム

オー論理エラー

カ、COBOL

問 2. 第 1 図の流れ図にしたがって処理するとき、次の(1)~(3)に答えなさい。なお、入力するRの値は 2 以上の整数、Nの値はRを超える整数とする。

- (1) Nの値が6, Rの値が3のとき、(ア)におけるPの値はいく つか答えなさい。
- (2) Nの値が 7, Rの値が 4 のとき, (イ)で出力される Cの値は いくつか答えなさい。
- (3) NとRの値が次の①、②のとき、(1)で出力されるCの値を比較すると、どのような関係になるか。 $\mathbf{7} \sim \mathbf{\dot{p}}$ から選び、記号で答えなさい。
 - Nの値が5、Rの値が2
 - ② Nの値が5, Rの値が3
 - ア. ①のときの方がCの値は大きい。
 - $\mathbf{1}$. ②のときの方が \mathbf{C} の値は大きい。
 - **ウ**. それぞれのCの値は同じである。

【5】 第1図のようなある国際サッカー大会のゴールキーパー成績ファイルを読み、処理条件にしたがって第2図のように印字する。 プログラムの空欄にあてはまる答えを解答群から選び、記号で答えなさい。

入力形式

(ファイル名:SOCCER-F, レコード名:SOCCER-R)

国名	選手名	失点数	総出場時間(分)
(KUNI)	(NAMAE)	(SITTEN)	(SFUN)
\times \sim \times	$\times \sim \times$	××	

(第1図)

処理条件

- (1) 第1図のファイルを読み, 第2図のように国名から 備考までを印字する。
- (2) 失点率は次の計算式で求める。

失点率 = 失点数 × 90 ÷ 総出場時間(分)

(小数第2位未満四捨五入)

- (3) 総出場時間(分)が270を超えた選手の備考に「対象選手」を印字する。また、その選手を対象に、失点率が最も低い選手名と失点率を求める。なお、失点率が同じ場合は、先のデータを優先する。
- (4) ファイルを読み終えたあと、全選手の失点率の平均を次の計算式で求め印字する。

全選手の失点率の平均 = 失点率計 ÷ 全選手の人数 (小数第2位未満四捨五入)

- (5) 最後に、対象選手の中で失点率が最も低い選手名と失点率を印字して、処理を終了する。
- (6) 入力データにエラーはないものとする。

- 解答群 -

- ア. KEI / NINZU
- 1. SFUN > 270
- ウ. KUNI
- **≖.** NAMAE
- オ. KEI + SFUN
- カ. MOVE 0 TO MIN
- ≠. MOVE 99.99 TO MIN
- **7**. SFUN < 270
- ケ. KEI + RITU
- ⊐. NINZU / KEI

WORKING-STORAGE SECTION

110111		010111100	0001101	**
01	SW		PIC	9(01).
01	RIT	J	PIC	9(02)V9(02).
01	ΚΕΙ		PIC	9(03)V9(02).
01	NIN	ZU	PIC	9(02).
01	HΕΙ		PIC	9(02)V9(02).
01	${\sf MIN}$		PIC	9(02)V9(02).
01	MIN	MEI	PIC	X(12).
01	ME13	SAI-GYO.		
	02		PIC	X(02) VALUE SPACE.
	02	M-KUN1	PIC	X(12).
	>			
01	HE1	-GYO.		
	02		PIC	X(40) VALUE SPACE.
	02	H-HEI	PIC	Z9. 99.
01	MIN-	-GYO.		
	02		PIC	X(24) VALUE SPACE.
	02	M-MINMEI	PIC	X(12).
	02		PIC	X(04) VALUE SPACE.
	02	M-MIN	PIC	Z9. 99.

出力形式

(ファイル名:SEISEKI-F, レコード名:SEISEKI-R)

(ゴー	ルキーパー成績	一覧表)	
(国名)	(選手名)	(失点率)	(備考)
ドイツ	アドラム	1.71	対象選手
カメルーン	カメニイ	0.45	
イタリア	ブホン	0.48	対象選手
₹	}	}	₹
ブラジル	Fセザル	2.00	対象選手
(全選手	の失点率の平均)	1.68	
[対象選手の中で失点率が 最も低い選手名と失点率]	ブホン	0.48	

(第2図)

PROCEDURE DIVISION.

P1. OPEN INPUT SOCCER-F OUTPUT SEISEKI-F

MOVE 0 TO SW KEI NINZU

(1)
PERFORM UNTIL SW = 1

READ SOCCER-F AT END

MOVE 1 TO SW

NOT AT END

COMPUTE RITU ROUNDED = SITTEN * 90 / SFUN

MOVE KUNI TO M-KUNI MOVE NAMAE TO M-NAMAE

MOVE RITU TO M-RITU

IF (2)

THEN

MOVE "対象選手" TO M-BIKO

IF RITU < MIN

THEN

MOVE RITU TO MIN

MOVE (3) TO MINMEI

END-IF

ELSE

MOVE SPACE TO M-BIKO

END-IF

WRITE SEISEKI-R FROM MEISAI-GYO AFTER 1

COMPUTE KEI = (4)

COMPUTE NINZU = NINZU + 1

END-READ

END-PERFORM

COMPUTE HEI ROUNDED = (5)

MOVE HEI TO H-HEI

WRITE SEISEKI-R FROM HEI-GYO AFTER 1

MOVE MINME! TO M-MINME!

MOVE MIN TO M-MIN

WRITE SEISEKI-R FROM MIN-GYO AFTER 2

CLOSE SOCCER-F SEISEKI-F

STOP RUN.

【6】 第1図のようなある企業の備品購入ファイルを読み、処理条件にしたがって第2図のように印字する。第6図の流れ図(1)~(5) にあてはまる答えを解答群から選び、記号で答えなさい。

入力形式

購入年	購入月	分類コード	
(NEN)	(TUKI)	(BUN)	
$\times \times \times \times$	××	$\times \times$	(貧

(第1図)

処理条件

(1) 第3図のテーブルBKODO-Tには分類コードが、テーブル BMEI-T には分類名がそれぞれ記憶されている。なお, 第3図の各テーブルは添字で対応している。

テーブル BKODO-T

(1) (2) (3) ~ (9) <u>テーブル BMEI-T</u> BMEI <u> </u> <u> </u> <u> </u> <u> </u>	BKODO	11	12	21	~	34
		(1)	(2)		~	(9)
RMFT	<u>テーブ</u> /	レ BMEI-	<u>T</u>			
DMB1 日秋州 7 / 1 / 1 / 1 / 1 / 1 / 2 / 2 / 2 / 2 / 2	BMEI	書類棚	ファイル棚	事務デスク	~	ファクシミリ

(第3図)

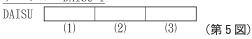
(2) 第1図のファイルを読み、次の処理を行う。

(2)

① 分類コードをもとに、第3図のテーブルBKODO-Tを 探索し、第4図のテーブルBSU-Tに購入数を集計す る。なお、第4図のテーブルは、第3図の各テーブル と添字で対応している。

テーブル BSU-T

② 備品管理番号は、次の計算式で作成する。なお、 分類コードごとの購入数は、最大99である。


備品管理番号 = 購入年 × 10000 +

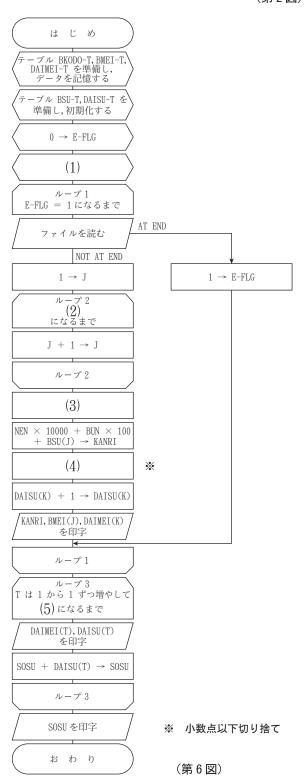
分類コード × 100 + 分類コードごとの購入数 例 20102103(購入年2010, 分類コード21, 事務デスクの3台目)

③ 分類コードの十の位は、大分類を表しており、分 類コードから大分類を求め,大分類ごとの購入数を 第5図のテーブル DAISU-T に集計し,第2図のよう に備品管理番号から大分類名までを印字する。 なお, 第5図のテーブル DAIMEI-T には大分類名が記憶さ ている。また、第5図の各テーブルは添字で対応し ている。

テーブル DAIMEI-T

DAIMEI	事務棚類	事務用品	│ 0A機器 │	
•	(1)	(2)	(3)	
テーブル	ν DATSH-	-Т		

- (3) ファイルを読み終えたあと、大分類別購入数および 備品購入総数を印字して,処理を終了する。
- (4) データにエラーはないものとする。


- 解答群 -

- $7.0 \rightarrow BUN$
- $\mathbf{1}$. BKODO(J) = NEN
- ウ. 0 → SOSU
- **I**. T > 9
- **オ.** BUN ÷ 10 → K
- カ. T > 3
- \pm . BUN \div 100 \rightarrow K
- $\boldsymbol{\mathcal{D}}$. BKODO(J) = BUN
- σ . DAISU(J) + 1 \rightarrow DAISU(J)
- \exists . BSU(J) + 1 \rightarrow BSU(J)

出力形式

(第2図)

【7】 第1図のようなある映画館の1日の入場チケット販売データを記録したファイルを読み,処理条件にしたがって第2図のよう に印字するプログラムの空欄をうめなさい。

入力形式

(ファイル名: HANBAI-F, レコード名: HANBAI-R)

販売番号	映画コード	上映時刻	販売枚数
(HBAN)	(ECD)	(JIKOKU)	(MSU)
$\times \times \times \times \times$	$\times \times$	$\times \times \times \times$	$\times \times$

(第1図)

処理条件

(1) 第1図の映画コードは、 $1 \sim 10$ までの10種類である。 映画コードを添字として、第3図のテーブル EIG-T に映画 タイトルが記憶されている。

テーブル EIG-T

EIG	0~0	$\triangle \sim \triangle$	~	_~_	×~×
	(1)	(2)	~	(9)	(10)
					(姓 2 國)

(2) 入場チケットは、1枚1,800円である。ただし、上映時刻 によって第4図のように値引きされる。

	時間帯	値引額
早朝	(8:00~9:59)	600 円
通常	(10:00~19:59)	なし
夜間	(20:00~23:00)	800 円

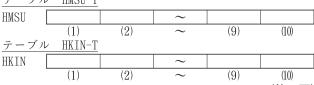
」(第4図)

(3) 第1図のファイルを読み、次の処理を行う。なお、上映 時刻は8時から23時までであり、次の例のように記録され ている。

例 13時10分 ⇒ 1310

時間帯ごとに、第5図のテーブル JIK-T に販売枚数を 集計する。

テーブル JIK-T


(早朝 8:00~9:59) (通常 10:00~19:59) (夜間 20:00~23:00) JIK (3)

(第5図)

② 映画コードごとに、第6図のテーブル HMSU-T に販売 枚数を,テーブル HKIN-T に販売金額を集計する。なお, 販売金額は次の計算式で求める。

販売金額 = (1800 - 値引額) × 販売枚数 また、第3図と第6図の各テーブルは、それぞれ添字 で対応している。

テーブル HMSU-T

(第6図)

- (4) ファイルを読み終えたあと、第2図のように映画タイト ルから販売金額計までを印字する。最後に, 販売金額総計 および時間帯別販売枚数を印字して、処理を終了する。
- (5) 入力データにエラーはないものとする。

WORKING-STORAGE SECTION

02 SOKEI-G

JIKAN-GYO.

02 JIKAN-J

02

WUR	VING-SIURAGE	SECTION.	
01	FLG	PIC X(01).	
01	KIN	PIC 9(06).	
01	SOKEI	PIC 9(07).	
01	₹ JIK-T.		
O I	02 JIK	PIC 9(04) OCCURS 3 T	IMES.
01	HMSU-T.		
	02 HMSU	PIC 9(04) OCCURS 10	TIMES.
01	HKIN-T.		
	02 HKIN	PIC 9(07) OCCURS 10	TIMES.
01	MEISAI-GYO.		
	02	PIC X(03) VALUE SPAC	E.
	02 EIG-M	PIC X(10).	
	>		
01	SOKEI-GYO.		
	02	PIC X(36) VALUE SPAC	E.

PIC Z, ZZZ, ZZ9.

PIC X(01) VALUE SPACE.

PIC Z, ZZZ, ZZ9 OCCURS 3 TIMES.

出力形式

(ファイル名:ITIRAN-F, レコード名:ITIRAN-R)

(第2図)

```
PROCEDURE DIVISION.
P1. OPEN INPUT HANBAI-F OUTPUT ITIRAN-F
    INITIALIZE FLG JIK-T HMSU-T HKIN-T SOKEI
    PERFORM UNTIL FLG = "E"
      READ HANBAI-F
        AT END
          MOVE "E" TO FLG
        NOT AT END
          IF [
                  (ア)
            THEN
              COMPUTE JIK(1) = JIK(1) + MSU
              MOVE 600 TO BIKI
            ELSE
              IF JIKOKU <= 1959
                THEN
                  COMPUTE JIK(2) = JIK(2) + MSU
                  MOVE 0 TO BIKI
                FLSF
                  COMPUTE JIK(3) = JIK(3) + MSU
                         (イ)
              END-IF
          END-IF
          COMPUTE HMSU(ECD) = HMSU(ECD) + MSU
          COMPUTE KIN = (1800 - BIKI) * MSU
                           (ウ)
          COMPUTE SOKEI = SOKEI + KIN
      END-READ
    END-PERFORM
    MOVE 1 TO K
    PERFORM UNTIL (エ)
      MOVE EIG(K) TO EIG-M
      MOVE HMSU(K) TO HMSU-M
      MOVE HKIN(K) TO HKIN-M
      WRITE ITIRAN-R FROM MEISAI-GYO AFTER 1
      COMPUTE K = K + 1
    END-PERFORM
    MOVE (オ) TO SOKEI-G
    WRITE ITIRAN-R FROM SOKEI-GYO AFTER 1
    MOVE 1 TO M
    PERFORM UNTIL M > 3
      MOVE JIK(M) TO JIKAN-J(M)
      COMPUTE M = M + 1
    END-PERFORM
    WRITE ITIRAN-R FROM JIKAN-GYO AFTER 3
```

CLOSE HANBAI-F ITIRAN-F

STOP RUN.

【5】 ある国際サッカー大会のゴールキーパー成績データを入力し,処理条件にしたがって第2図の実行形式のように表示する。 プログラムの空欄にあてはまる答えを解答群から選び、記号で答えなさい。

フォーム - データを入力してください-失点数 総出場時間(分) 選手名 Command1 Text2 Text3 Text1 Command2 失点率 Label1 Command3 備考 Label2 全選手の失点率の平均 Label3 対象選手の中で失点率が最も低い選手名と失点率 選手名 Label4 失点率 Label5

(第1図)

- データを入力してください -失点数 総出場時間(分) 選手名 カリジャス 3 クリア 失点率 0.60 終了 備考対象選手 全選手の失点率の平均 1.85 対象選手の中で失点率が最も低い選手名と失点率 選手名 Fサレス

(第2図)

0.55

失点率

処理条件

- (1) 第2図の選手名,失点数,総出場時間(分)を入力し, 「処理」ボタンをクリックすると次の処理を行う。
 - ① 失点率を次の計算式で求め、Label1に表示する。 失点率 = 失点数 × 90 ÷ 総出場時間(分)
 - ② 総出場時間(分)が270を超えた選手は, Label2 に 「対象選手」を表示する。また、その選手を対象に、 失点率が最も低い選手名と失点率を求め、Label4と Label5 に表示する。なお、失点率が同じ場合は、先 のデータを優先する。
 - ③ 入力時点までの全選手の失点率の平均を次の計算式 で求め、Label3 に表示する。

全選手の失点率の平均 = 失点率計 ÷ 全選手の人数

(2) 表示に関する設定は、第2図のとおりとする。また、 入力データにエラーはなく、操作は正常に行われるもの とする。

- 解答群 -

- ア. Kei / Ninzu
- **1**. Sfun > 270
- ウ. Sitten
- ≖. Namae
- オ. Kei + Sfun
- **カ**. Min = 0
- **+**. Min = 99.99
- **ク**. Sfun < 270
- ケ. Kei + Ritu
- ⊐. Ninzu / Kei

Option Explicit Dim Min, Kei As Single Dim Ninzu As Integer	
Private Sub Form_Load() Call Syokyo Label3. Caption = "": Label4. Caption = "" Label5. Caption = "" Kei = 0: Ninzu = 0: (1) End Sub	
Private Sub Command1_Click() Dim Namae As String Dim Sitten, Sfun As Integer Dim Ritu, Hei As Single Namae = Text1. Text Sitten = Val(Text2. Text) Sfun = Val(Text3. Text) Ritu = Sitten * 90 / Sfun Label1. Caption = Format(Ritu, "#0.00") If	(処理)
Private Sub Command2_Click() (Call Syokyo End Sub	クリア)
Private Sub Command3_Click() End End Sub	(終了)
Private Sub Syokyo() Text1. Text = "": Text2. Text = "" Text3. Text = "" Label1. Caption = "": Label2. Caption = "" End Sub	(消去)

【6】 第1図のようなある企業の備品購入データを読み,処理条件にしたがって第2図のように表示する。第6図の流れ図 $(1)\sim(5)$ に あてはまる答えを解答群から選び、記号で答えなさい。

入力形式

購入年	購入月	分類コード	
(Nen)	(Tuki)	(Bun)	
$\times \times \times \times$	××	$\times \times$	(第1図)

(1) フォームロード時に, 第3図の配列 Bkodo に分類コード を,配列 Bmei に分類名をそれぞれ記憶する。なお, 第3図の各配列は添字で対応している。

配列

11	12	21	~	34
(1)	(2)	(3)	~	(9)
書類棚	ファイル棚	事務デスク	~	ファクシミリ
(1)	(2)	(3)	~	(9)
	11 (1) 書類棚 (1)	(1) (2) 書類棚 ファイル棚	(1) (2) (3) 書類棚 ファイル棚 事務デスク	11 12 21 ~ (1) (2) (3) ~ 書類棚 ファイル棚 事務デスク ~

- (2) 第2図の「処理」ボタンをクリックすると、第1図の データを読み,次の処理を行う。
 - ① 分類コードをもとに、第3図の配列 Bkodo を探索し、 第4図の配列Bsuに購入数を集計する。なお,第4図 の配列は、第3図の各配列と添字で対応している。

配列 Bsu (2)(9) (第4図)

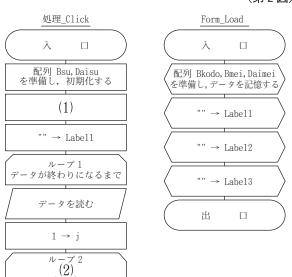
② 備品管理番号は、次の計算式で作成する。なお、分 類コードごとの購入数は、最大99である。

備品管理番号 = 購入年 × 10000 + 分類コード × 100 + 分類コードごとの購入数

例 20102103 (購入年2010, 分類コード21, 事務デスクの3台目)

③ 分類コードの十の位は、大分類を表しており、分類 コードから大分類を求め、大分類ごとの購入数を第5図 の配列 Daisu に集計し、備品管理番号から大分類名ま でを Label1 に表示する。なお、第5図の配列 Daimei に大分類名をフォームロード時に記憶する。また, 第5図の各配列は添字で対応している。

配列


- (3) データを読み終えたあと、大分類別購入数を Label 2 に、備品購入総数をLabel3に表示し、処理を終了する。
- (4) 表示に関する設定は、第2図のとおりとする。また、 入力データにエラーはなく、操作は正常に行われるもの とする。

- 解答群 -

- $7.0 \rightarrow Bun$
- **1.** Bkodo(j) = Nen
- ウ. $0 \rightarrow Sosu$
- **エ**. 9
- **オ.** Bun ÷ 10 → k
- カ. 3
- \pm . Bun \div 100 \rightarrow k
- $\boldsymbol{\mathcal{D}}$. Bkodo(j) = Bun
- σ . Daisu(j) + 1 \rightarrow Daisu(j)
- **⊐.** Bsu(j) + 1 → Bsu(j)

実行形式

(3)Nen × 10000 + Bun × 100 + Bsu(j) → Kanri (4) ※ 小数点以下切り捨て Daisu(k) + 1 → Daisu(k) Kanri, Bmei(j), Daimei(k) を Labell に追加して表示する ループ1 "" → Label2 t は 1 から 1 ずつ増やして (5)まで / Daimei(t),Daisu(t) を Label2に追加して表示する Sosu + Daisu(t) → Sosu ループ3 Sosu → Label3

出

 $j + 1 \rightarrow j$

ループ 2

(第6図)

【1】 ある映画館の1日の入場チケット販売データを入力し、処理条件にしたがって第2図の実行形式のように表示するプログラム の空欄をうめなさい。

フォーム - データを入力してください Command1 映画コード 上映時刻 販売枚数 Text2 Text1 Text3 Command2 チケット販売集計一覧表 映画タイトル 販売枚数計 販売金額計 Label1 販売金額総計 Labe12 時間帯別販売枚数 早朝 通常 夜間

(第1図)

Command3

処理条件

Labe13

(1) 第2図の映画コードは、1~10までの10種類である。フォームロード時に、映画コードを添字として、第3図の配列Eigに映画タイトルを記憶する。配列

<u> </u>						
Eig	0~0	$\triangle \sim \triangle$	~	_~_	\times \sim \times	
	(1)	(2)	\sim	(9)	(10)	

(第3図)

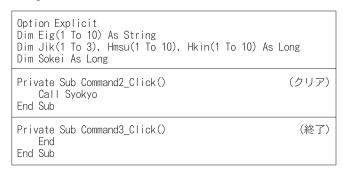
(2) 入場チケットは、1枚1,800円である。ただし、上映時刻 によって,第4図のように値引きされる。

時間帯	値引額	
早朝 (8:00~9:59)	600円	
通常 (10:00~19:59)	なし	
夜間 (20:00~23:00)	800円	(第4図)
44 a D	and the first test	mm to be seen

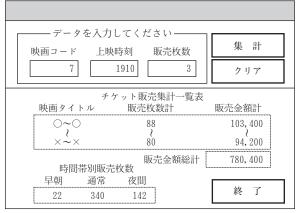
(3) 第2図のように映画コード、上映時刻、販売枚数を入力し、「集計」ボタンをクリックすると次の処理を行う。なお、上映時刻は8時から23時までであり、次の例のように 入力する

例 13時10分 ⇒ 1310

① 時間帯ごとに第5図の配列 Jik に販売枚数を集計する。 配列



② 映画コードごとに、第6図の配列 Hmsu に販売枚数を、配列 Hkin に販売金額を集計する。なお、販売金額は


次の計算式で求める。 販売金額 = (1800 - 値引額) × 販売枚数 また、第3図と第6図の各配列は、それぞれ添字で 対応している。

- ③ 第2図のように入力時点までの映画タイトルから販売 金額計までを Labell に, 販売金額総計を Label2 に,
- 時間帯別販売枚数を Label3 に表示する。) 表示に関する設定は、第2図のとおりとする。また、入力データにエラーはなく、操作は正常に行われるものとす る。

(第2図)

```
Private Sub Form_Load()
     Dim h As Integer Eig(1) = "\bigcirc \sim \bigcirc
     Eig(10) = " \times \sim \times "
     Call Syokyo
     Label1.Caption = "": Label2.Caption = ""
Label3.Caption = ""
     Jik(1) = 0: Jik(2) = 0: Jik(3) = 0
     For h = 1 To 10
          Hmsu(h) = 0
          Hkin(h) = 0
     Next h
     Sokei = 0
End Sub
```

```
(集計)
Private Sub Command1_Click()
     Dim Ecd, Jikoku, Msu, Biki, k, m As Integer
     Dim Kin As Long
     Ecd = Val(Text1. Text)
     Jikoku = Val(Text2. Text)
     \begin{aligned} &\text{Msu} &= \text{Val}\left(\text{Text3. Text}\right) \\ &\text{If} & (\mathcal{P}) & \text{Then} \\ &\text{Jik}(1) &= \text{Jik}(1) + \text{Msu} \end{aligned}
           Biki = 600
           If Jikoku <= 1959 Then
                Jik(2) = Jik(2) + Msu
                Biki = 0
           Else
                 Jik(3) = Jik(3) + Msu
                      (1)
           End If
     End If
     Hmsu(Ecd) = Hmsu(Ecd) + Msu
     | Sokei = Sokei + Kin | Label1. Caption = ""
     Do Until (エ)
          Label1.Caption = Label1.Caption & _
Eig(k) & " " & _
Format(Hmsu(k), "#,##0") & "
Format(Hkin(k), "#,###,##0") & _
                    Chr(13) & Chr(10)
           k = k + 1
     Loop
     Label2. Caption = Format(( (才) , "#, ###, ##0")
     Do Until m > 3
          Label3. Caption = Label3. Caption & _ "
                    Format(Jik(m), "#, ##0") &
          m = m + 1
     Loop
End Sub
```

注 第2図の表示は見やすく示してある。

Private Sub Syokyo() Text1. Text =

主催 點 全国商業高等学校協会

平成22年度(第43回)情報処理検定試験プログラミング部門 第2級

解 答 用 紙

[1]	1	2	3	4	5

[2]	1	2	3	4	5

[3]	1	2	3	4	5

【4】		問 1			問 2	
	(1)	(2)	(3)	(1)	(2)	(3)

_			
	小	計	
l			
1			

[5]	(1)	(2)	(3)	(4)	(5)

[6]	(1)	(2)	(3)	(4)	(5)

【7】	(T)		1	1	1	1	1	1	1	ı	1	1	1	1	1	1	1	1	ı	ı	ı	ı	ı	ı		1	1		1	1		
	(1)		1								1		1													1						
	(ウ)																															
	(工)		1																1	1		1				1						
	(才)		ĺ			i			i	i	ı						i		i I	ı	ı	i I	ı			ı					1	

試験場校名	受験番号	選択	言語
		COBOL	イベント駆動型 BASIC

小	計

合	計

主催 對 全国商業高等学校協会

平成22年度(第43回)情報処理検定試験プログラミング部門 第2級

審査基準

エ コ ケ キ イ _{各2点}	[1]	1	2	3	4	5	
		工	コ	ケ	丰	イ	各 2 点計10点

[2]	1	2	3	4	5	
	カ	才	ア	ク	ウ	各 2 点計10点

[3]	1	2	3	4	5	
	ウ	ウ	ア	イ	ア	各 2 点計10点

[4]	問 1					
	(1)	(2)	(3)	(1)	(2)	(3)
	才	ア	工	120	35	ウ

問1各2点 問2各3点 計15点

小	計
4	5

...... (COBOL)

[5]	(1)	(2)	(3)	(4)	(5)	
	丰	1	工	ケ	ア	 各 計

各 3 点 計15点

[6]	(1)	(2)	(3)	(4)	(5)	
	ウ	ク	コ	才	カ	各 4 点計20点

(7) J I K O K U <= 959 (1) M O V E 800 T O B I K I (2) C O M P U T E H K I N (E C D) = H K I N (E C D) + K I N (エ) K > 10 (オ) S O K E I

試験場校名	受験番号	選択	言語
		COBOL	イベント駆動型 BASIC

小 計 55

自計 100

主催 對 全国商業高等学校協会

平成22年度(第43回)情報処理検定試験プログラミング部門 第2級

審査基準

[1]	1	2	3	4	5	
	工	コ	ケ	丰	1	各 2 点計10点

 【2】
 1
 2
 3
 4
 5

 カ
 オ
 ア
 ク
 ウ
 各2点計10点計10点

 【3】
 1
 2
 3
 4
 5

 ウ
 ウ
 ア
 イ
 ア

 各2点計10点

 問1
 問2

 (1)
 (2)
 (3)
 (1)
 (2)
 (3)

 オ
 ア
 エ
 120
 35
 ウ

問1各2点 問2各3点 計15点 小計 45

················ 〔イベント駆動型BASIC〕···············

[5]	(1)	(2)	(3)	(4)	(5)
	丰	イ	工	ケ	ア

各3点計15点

[6]	(1)	(2)	(3)	(4)	(5)	
	ウ	ク	コ	オ	カ	各 4 点計20点

(7) J i k o k u <= 959 (1) B i k i = 800 (2) H k i n (E c d) = H k i n (E c d) + K i n (1) K > 10 (2) S o k e i

注 大文字,小文字および空白は問わない。

各 4 点 計20点

試験場校名	受験番号	選択言語	
		COBOL	イベント駆動型 BASIC

小 計 55

白 計 100